Narrow your search

Library

ULiège (9)

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

VIVES (8)

Vlaams Parlement (8)

More...

Resource type

book (15)

dissertation (1)


Language

English (16)


Year
From To Submit

2022 (16)

Listing 1 - 10 of 16 << page
of 2
>>
Sort by

Dissertation
Travail de fin d'études et stage[BR]- Travail de fin d'études : Fabrication and characterization of low-alloyed tool steel obtained by Selective Laser Melting[BR]- Stage d'insertion professionnelle
Authors: --- --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present work explores the capability of fabbricating low-alloyed metal parts through the layer-by-layer Selective Laser Melting (SLM) technique. The alloy used was AISI S2, which is a carbide-free tool steel made of 0,49%wt of Carbon. Such kind of steels are not popular as for Additive Manufacturing process due to their unpromising welding properties. However, obtained results demonstrated the feasibility of printing fully dense, defects-free with good surface quality low-alloyed steels. A process map containing the optimum set of parameters for the realisation of the S2 metal parts will be presented. Indications for the use of the same process map in the situations of different process conditions or different manufactured steels will be provided as well. Later, the printed pieces were subject to microstructural investigation under their as-build and heat-treated conditions. The outcomes showed a epitaxial grain growth strongly influenced by the scan strategy. Moreover, the outermost top layer consisted of supersaturated martensite which was characterized in order to gain information about the prior microstructure which was present. Whereas the rest of the cross-sections of the as-built samples were found to have bands of tempered martensite at various degrees of tempering. The cause was related to the complex thermal history of the SLM process. In order to achieve all the results several unique techniques have been used such as reverse Differential Thermal Analysis, post-processing heat treatment and nanoindentation. The latters were used in less common ways to obtain a deeper knowledge of the microstructure of S2 metal parts printed through SLM technique, showing promising results.


Book
Design and Applications of Additive Manufacturing and 3D Printing
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products.


Book
Design and Applications of Additive Manufacturing and 3D Printing
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products.


Book
Design and Applications of Additive Manufacturing and 3D Printing
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products.


Book
New Frontiers in Materials Design for Laser Additive Manufacturing
Authors: --- ---
ISBN: 3036558829 3036558810 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the industry has started to use parts printed by powder-based laser additive manufacturing (LAM) when precision and good mechanical properties are required. Applications can be found in the aerospace, automotive, and medical sectors. However, the powder materials available are often inadequate for contemporary processing tasks, and often generate process instabilities as well as porosities and defects in the resulting parts. This Special Issue, “New Frontiers in Materials Design for Laser Additive Manufacturing”, focuses on advances in material design and the development of laser additive manufacturing. Of particular interest are original papers dealing with metal and polymer powders for laser powder bed fusion or directed energy deposition. In this Special Issue, we are especially interested in answering the following questions: How can laser process parameters and material properties be adapted to the LAM process via the matrix modification (e.g., alloying, doping, compounding) of powders? How can powder properties like flowability, wetting, porosity, or (heterogeneous) nucleation be adapted to the LAM process via the surface modification of powders? How may calorimetry, high-speed videography, pyrometry, and online spectroscopy, as well as modeling, contribute to understanding dynamics of melting and recrystallization, in addition to the lateral distribution of the thermal process window?


Book
Additive Manufacturing Research and Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning.

Keywords

Technology: general issues --- History of engineering & technology --- powder-bed additive manufacturing (AM) --- powder spreading --- spreading process map --- discrete element method (DEM) --- machine learning --- GMA additive manufacturing --- weld reinforcement --- visual features --- neural network --- selective laser melting --- magnesium alloys --- properties --- plasma metal deposition --- additive manufacturing --- 316L --- processing conditions --- mechanical properties --- microstructure --- virgin --- recycled --- metal powders --- laser powder bed fusion --- laser additive manufacturing --- 316l ss --- nickel alloy --- tribological behavior --- porosity --- rough surface --- ultrasonic testing --- convolutional neural network --- deep neural network --- multi-layer perceptron --- key performance indicators --- topology optimization --- design for additive manufacturing --- design for additive manufacturing services --- selective laser melting (SLM) --- laser powder bed fusion (LPBF) --- powder --- particle size distribution --- particle morphology --- powder layer density --- part density --- flowability --- Hausner ratio --- electron beam melting --- customized implant --- cost analysis --- fitting accuracy --- cranial reconstruction --- thin wall manufacturing --- process modelling --- ultrasonic vibration --- laser directed energy deposition --- coating --- TiC-TMC --- extremity --- revision --- limb salvage surgery --- 3D printing --- customized --- implant --- powder metallurgy --- simulated body fluid --- biomaterial --- fatigue --- titanium --- direct laser deposition --- Inconel 625 --- parametrisation --- microhardness --- preheating --- binder jetting --- sand casting --- aluminum alloy --- corrosion --- pressure drop --- heat exchanger --- surface textures --- dimples --- drag reduction --- powder-bed additive manufacturing (AM) --- powder spreading --- spreading process map --- discrete element method (DEM) --- machine learning --- GMA additive manufacturing --- weld reinforcement --- visual features --- neural network --- selective laser melting --- magnesium alloys --- properties --- plasma metal deposition --- additive manufacturing --- 316L --- processing conditions --- mechanical properties --- microstructure --- virgin --- recycled --- metal powders --- laser powder bed fusion --- laser additive manufacturing --- 316l ss --- nickel alloy --- tribological behavior --- porosity --- rough surface --- ultrasonic testing --- convolutional neural network --- deep neural network --- multi-layer perceptron --- key performance indicators --- topology optimization --- design for additive manufacturing --- design for additive manufacturing services --- selective laser melting (SLM) --- laser powder bed fusion (LPBF) --- powder --- particle size distribution --- particle morphology --- powder layer density --- part density --- flowability --- Hausner ratio --- electron beam melting --- customized implant --- cost analysis --- fitting accuracy --- cranial reconstruction --- thin wall manufacturing --- process modelling --- ultrasonic vibration --- laser directed energy deposition --- coating --- TiC-TMC --- extremity --- revision --- limb salvage surgery --- 3D printing --- customized --- implant --- powder metallurgy --- simulated body fluid --- biomaterial --- fatigue --- titanium --- direct laser deposition --- Inconel 625 --- parametrisation --- microhardness --- preheating --- binder jetting --- sand casting --- aluminum alloy --- corrosion --- pressure drop --- heat exchanger --- surface textures --- dimples --- drag reduction


Book
Additive Manufacturing Research and Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning.

Keywords

powder-bed additive manufacturing (AM) --- powder spreading --- spreading process map --- discrete element method (DEM) --- machine learning --- GMA additive manufacturing --- weld reinforcement --- visual features --- neural network --- selective laser melting --- magnesium alloys --- properties --- plasma metal deposition --- additive manufacturing --- 316L --- processing conditions --- mechanical properties --- microstructure --- virgin --- recycled --- metal powders --- laser powder bed fusion --- laser additive manufacturing --- 316l ss --- nickel alloy --- tribological behavior --- porosity --- rough surface --- ultrasonic testing --- convolutional neural network --- deep neural network --- multi-layer perceptron --- key performance indicators --- topology optimization --- design for additive manufacturing --- design for additive manufacturing services --- selective laser melting (SLM) --- laser powder bed fusion (LPBF) --- powder --- particle size distribution --- particle morphology --- powder layer density --- part density --- flowability --- Hausner ratio --- electron beam melting --- customized implant --- cost analysis --- fitting accuracy --- cranial reconstruction --- thin wall manufacturing --- process modelling --- ultrasonic vibration --- laser directed energy deposition --- coating --- TiC-TMC --- extremity --- revision --- limb salvage surgery --- 3D printing --- customized --- implant --- powder metallurgy --- simulated body fluid --- biomaterial --- fatigue --- titanium --- direct laser deposition --- Inconel 625 --- parametrisation --- microhardness --- preheating --- binder jetting --- sand casting --- aluminum alloy --- corrosion --- pressure drop --- heat exchanger --- surface textures --- dimples --- drag reduction --- n/a


Book
Process-Structure-Properties in Polymer Additive Manufacturing II
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM) methods have grown and evolved rapidly in recent years. AM for polymers is particularly exciting and has great potential in transformative and translational research in many fields, such as biomedicine, aerospace, and even electronics. The current methods for polymer AM include material extrusion, material jetting, vat polymerization, and powder bed fusion. In this Special Issue, state-of-the-art reviews and current research results, which focus on the process–structure–properties relationships in polymer additive manufacturing, are reported. These include, but are not limited to, assessing the effect of process parameters, post-processing, and characterization techniques.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- tray location --- build direction --- surface finish --- matte --- glossy --- magnetic polymer composites --- anisotropic properties --- dual-cure resin --- polymer casting --- additive manufacturing --- thermoplastic polyurethane --- polylactic acid --- trachea scaffold --- 3D filament --- selective laser sintering --- di-carboxylic acids --- plasticizers --- solid oral forms --- printability --- heating temperature --- Peano curve --- composite --- PolyJet 3D printing --- rule of mixture --- multi-material printing --- biodegradable polyesters --- polyglycolic acid (PGA) --- fused deposition modeling (FDM) --- triply periodic minimal surfaces (TPMS) --- mechanical property --- poly(lactic acid) --- optimization --- simulation --- finite element analysis (FEA) --- polymers --- material jetting --- 3D printing --- airfoil --- aerodynamic model --- design of experiments --- surface roughness --- photopolymerization --- curing strategy --- reaction heat --- shrinkage and warpage --- powder bed fusion --- laser sintering --- isothermal --- low temperature laser sintering --- selective laser melting --- tray location --- build direction --- surface finish --- matte --- glossy --- magnetic polymer composites --- anisotropic properties --- dual-cure resin --- polymer casting --- additive manufacturing --- thermoplastic polyurethane --- polylactic acid --- trachea scaffold --- 3D filament --- selective laser sintering --- di-carboxylic acids --- plasticizers --- solid oral forms --- printability --- heating temperature --- Peano curve --- composite --- PolyJet 3D printing --- rule of mixture --- multi-material printing --- biodegradable polyesters --- polyglycolic acid (PGA) --- fused deposition modeling (FDM) --- triply periodic minimal surfaces (TPMS) --- mechanical property --- poly(lactic acid) --- optimization --- simulation --- finite element analysis (FEA) --- polymers --- material jetting --- 3D printing --- airfoil --- aerodynamic model --- design of experiments --- surface roughness --- photopolymerization --- curing strategy --- reaction heat --- shrinkage and warpage --- powder bed fusion --- laser sintering --- isothermal --- low temperature laser sintering --- selective laser melting


Book
Materials, Design and Process Development for Additive Manufacturing
Author:
ISBN: 3036549285 3036549277 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing is already actively used in various high-tech industries today. At the same time, there is a certain limitation and imperfection of known and widely used conventional materials when they are used in additive manufacturing. In this regard, extensive research and development are aimed at the advancements of new materials by adjusting the chemical compositions of conventional alloys, new equipment with expanded functionality and the ability to work with a wide range of materials that were previously not available for additive manufacturing. This Special Issue covers a wide scope of additive manufacturing processes, comprising investigation, characterization of materials and their properties, development and application of new materials, structures designed for additive manufacturing, as well as processes and techniques that will expand the potential applications of layer-by-layer synthesis.


Book
Advances in Laser Materials Processing
Authors: --- ---
ISBN: 3036548882 3036548874 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Laser processing has become more relevant today due to its fast adaptation to the most critical technological tasks, its ability to provide processing in the most rarefied and aggressive mediums (vacuum conditions), its wide field of potential applications, and the green aspects related to the absence of industrial cutting chips and dust. With the development of 3D production, laser processing has received renewed interest associated with its ability to achieve pointed to high-precision powder melting or sintering. New technologies and equipment, which improve and modify optical laser parameters, contribute to better absorption of laser energy by metals or powder surfaces and allow for multiplying laser power that can positively influence the industrial spread of the laser in mass production and advance the existing manufacturing methods. The latest achievements in laser processing have become a relevant topic in the most authoritative scientific journals and conferences in the last half-century. Advances in laser processing have received multiple awards in the most prestigious competitions and exhibitions worldwide and at international scientific events. The Special Issue is devoted to the most recent achievements in the laser processing of various materials, such as cast irons, tool steels, high entropy alloys, hard-to-remelt materials, cement mortars, and post-processing and innovative manufacturing based on a laser.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by