Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This textbook examines database systems from the viewpoint of a software developer. This perspective makes it possible to investigate why database systems are the way they are. It is of course important to be able to write queries, but it is equally important to know how they are processed. We e.g. don’t want to just use JDBC; we also want to know why the API contains the classes and methods that it does. We need a sense of how hard is it to write a disk cache or logging facility. And what exactly is a database driver, anyway? The first two chapters provide a brief overview of database systems and their use. Chapter 1 discusses the purpose and features of a database system and introduces the Derby and SimpleDB systems. Chapter 2 explains how to write a database application using Java. It presents the basics of JDBC, which is the fundamental API for Java programs that interact with a database. In turn, Chapters 3-11 examine the internals of a typical database engine. Each chapter covers a different database component, starting with the lowest level of abstraction (the disk and file manager) and ending with the highest (the JDBC client interface); further, the respective chapter explains the main issues concerning the component, and considers possible design decisions. As a result, the reader can see exactly what services each component provides and how it interacts with the other components in the system. By the end of this part, s/he will have witnessed the gradual development of a simple but completely functional system. The remaining four chapters then focus on efficient query processing, and focus on the sophisticated techniques and algorithms that can replace the simple design choices described earlier. Topics include indexing, sorting, intelligent buffer usage, and query optimization. This text is intended for upper-level undergraduate or beginning graduate courses in Computer Science. It assumes that the reader is comfortable with basic Java programming; advanced Java concepts (such as RMI and JDBC) are fully explained in the text. The respective chapters are complemented by “end-of-chapter readings” that discuss interesting ideas and research directions that went unmentioned in the text, and provide references to relevant web pages, research articles, reference manuals, and books. Conceptual and programming exercises are also included at the end of each chapter. Students can apply their conceptual knowledge by examining the SimpleDB (a simple but fully functional database system created by the author and provided online) code and modifying it.
Database management. --- Database Management. --- Database design. --- Computer software --- Development. --- Development of computer software --- Software development --- Data base design --- System design --- Data base management --- Data services (Database management) --- Database management services --- DBMS (Computer science) --- Generalized data management systems --- Services, Database management --- Systems, Database management --- Systems, Generalized database management --- Electronic data processing
Choose an application
This book teaches you how to evaluate a distributed system from the perspective of immutable objects. You will understand the problems in existing designs, know how to make small modifications to correct those problems, and learn to apply the principles of immutable architecture to your tools. Most software components focus on the state of objects. They store the current state of a row in a relational database. They track changes to state over time, making several basic assumptions: there is a single latest version of each object, the state of an object changes sequentially, and a system of record exists. This is a challenge when it comes to building distributed systems. Whether dealing with autonomous microservices or disconnected mobile apps, many of the problems we try to solve come down to synchronizing an ever-changing state between isolated components. Distributed systems would be a lot easier to build if objects could not change. After reading The Art of Immutable Architecture, you will come away with an understanding of the benefits of using immutable objects in your own distributed systems. You will learn a set of rules for identifying and exchanging immutable objects, and see a collection of useful theorems that emerges and ensures that the distributed systems we build are eventually consistent. Using patterns, you will find where the truth converges, see how changes are associative, rather than sequential, and come to feel comfortable understanding that there is no longer a single source of truth. Practical hands-on examples reinforce how to build software using the described patterns, techniques, and tools. By the end, you will possess the language and resources needed to analyze and construct distributed systems with confidence. The assumptions of the past were sufficient for building single-user, single-computer systems. But as we expand to multiple devices, shared experiences, and cloud computing, they work against us. It is time for a new set of assumptions. Start with immutable objects, and build better distributed systems. What You Will Learn: Evaluate a distributed system from the perspective of immutable objects Recognize the problems in existing designs, and make small modifications to correct them Start a new system from scratch, applying patterns Apply the principles of immutable architecture to your tools, including SQL databases, message queues, and the network protocols that you already use Discover new tools that natively apply these principles This book is for software architects and senior developers. It contains examples in SQL and languages such as JavaScript and C#. Past experience with distributed computing, data modeling, or business analysis is helpful. Michael L. Perry has built upon the works of mathematicians such as Bertrand Meyer, Leslie Lamport, and Donald Knuth to develop a mathematical system for software development. He has captured this system in a set of open source projects. Michael often presents on math and software at events and online. You can find out more at qedcode.com. .
Software engineering. --- Computer programming. --- Software Engineering. --- Programming Techniques. --- Computers --- Electronic computer programming --- Electronic data processing --- Electronic digital computers --- Programming (Electronic computers) --- Coding theory --- Computer software engineering --- Engineering --- Programming --- Database design. --- Databases. --- Distributed processing. --- Data banks --- Data bases --- Databanks --- Database systems --- Computer files --- Electronic information resources --- Data base design --- System design --- Distributed computer systems in electronic data processing --- Distributed computing --- Distributed processing in electronic data processing --- Computer networks
Listing 1 - 2 of 2 |
Sort by
|