Narrow your search

Library

VUB (5)

EhB (4)

KU Leuven (3)

UCLouvain (3)

ULB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

More...

Resource type

book (6)


Language

English (5)

French (1)


Year
From To Submit

2010 (6)

Listing 1 - 6 of 6
Sort by

Book
Around the Research of Vladimir Maz'ya I
Authors: ---
ISSN: 15715485 ISBN: 9781441913418 9781441913401 1441913408 Year: 2010 Volume: 11 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

International Mathematical Series Volume 11 Around the Research of Vladimir Ma'z'ya I Function Spaces Edited by Ari Laptev Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985). Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985). The following topics are discussed in this volume: Orlicz-Sobolev spaces, weighted Sobolev spaces, Besov spaces with negative exponents, Dirichlet spaces and related variational capacities, classical inequalities, including Hardy inequalities (multidimensional versions, the case of fractional Sobolev spaces etc.), Hardy-Maz'ya-Sobolev inequalities, analogs of Maz'ya's isocapacitary inequalities in a measure-metric space setting, Hardy type, Sobolev, Poincare, and pseudo-Poincare inequalities in different contexts including Riemannian manifolds, measure-metric spaces, fractal domains etc., Mazya's capacitary analogue of the coarea inequality in metric probability spaces, sharp constants, extension operators, geometry of hypersurfaces in Carnot groups, Sobolev homeomorphisms, a converse to the Maz'ya inequality for capacities and applications of Maz'ya's capacity method. Contributors include: Farit Avkhadiev (Russia) and Ari Laptev (UK Sweden); Sergey Bobkov (USA) and Boguslaw Zegarlinski (UK); Andrea Cianchi (Italy); Martin Costabel (France), Monique Dauge (France), and Serge Nicaise (France); Stathis Filippas (Greece), Achilles Tertikas (Greece), and Jesper Tidblom (Austria); Rupert L. Frank (USA) and Robert Seiringer (USA); Nicola Garofalo (USA-Italy) and Christina Selby (USA); Vladimir Gol'dshtein (Israel) and Aleksandr Ukhlov (Israel); Niels Jacob (UK) and Rene L. Schilling (Germany); Juha Kinnunen (Finland) and Riikka Korte (Finland); Pekka Koskela (Finland), Michele Miranda Jr. (Italy), and Nageswari Shanmugalingam (USA); Moshe Marcus (Israel) and Laurent Veron (France); Joaquim Martin (Spain) and Mario Milman (USA); Eric Mbakop (USA) and Umberto Mosco (USA ); Emanuel Milman (USA); Laurent Saloff-Coste (USA); Jie Xiao (USA) Ari Laptev -Imperial College London (UK) and Royal Institute of Technology (Sweden). Ari Laptev is a world-recognized specialist in Spectral Theory of Differential Operators. He is the President of the European Mathematical Society for the period 2007- 2010. Tamara Rozhkovskaya - Sobolev Institute of Mathematics SB RAS (Russia) and an independent publisher. Editors and Authors are exclusively invited to contribute to volumes highlighting recent advances in various fields of mathematics by the Series Editor and a founder of the IMS Tamara Rozhkovskaya. Cover image: Vladimir Maz'ya


Book
Around the Research of Vladimir Maz'ya III
Authors: ---
ISSN: 15715485 ISBN: 9781441913456 9781441913449 1441913440 Year: 2010 Volume: 13 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

International Mathematical Series Volume 13 Around the Research of Vladimir Ma'z'ya III Analysis and Applications Edited by Ari Laptev More than 450 research articles and 20 books by Prof. Maz'ya contain numerous fundamental results and fruitful techniques which have strongly influenced the development of many branches in Analysis and, in particular, the topics discussed in this volume: problems with biharmonic differential operators, the minimal thinness of nontangentially accessible domains, the Lp-dissipativity of partial differential operators and the Lp-contractivity of the generated semigroups, uniqueness and nonuniqueness in inverse hyperbolic problems and the existence of black (white) holes, global exponential bounds for Green's functions for differential and integral equations with possibly singular coefficients, data, and boundaries of the domains, properties of spectral minimal partitions, the boundedness of integral operators from Besov spaces on the boundary of a Lipschitz domain into weighted Sobolev spaces of functions in the domain, the Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities for operators on functions in metric spaces, spectral problems with the Schrodinger operator, the Weyl formula for the Laplace operator on a domain under minimal assumptions on the boundary, a degenerate oblique derivative problem for second order uniformly elliptic operators, weighted inequalities with the Hardy operator in the integral and supremum form, finite rank Toeplitz operators and applications, the resolvent of a non-selfadjoint pseudodifferential operator. Contributors include: David R. Adams (USA), Volodymyr Hrynkiv (USA), and Suzanne Lenhart (USA); Hiroaki Aikawa (Japan); Alberto Cialdea (Italy); Gregory Eskin (USA); Michael W. Frazier (USa) and Igor E. Verbitsky (USA); Bernard Helffer (France), Thomas Hoffmann-Ostenhof (Austria), and Susanna Terracini (italy); Dorina Mitrea (USA), Marius Mitrea (USA), and Sylvie Monniaux (France); Stanislav Molchanov (USA) and Boris Vainberg (USA); Yuri Netrusov (UK) and Yuri Safarov (UK); Dian K. Palagachev (Italy); Lubos Pick (Czech Republic); Grigori Rozenblum (Sweden); Johannes Sjostrand (France). Ari Laptev Imperial College London (UK) and Royal Institute of Technology (Sweden) Ari Laptev is a world-recognized specialist in Spectral Theory of Differential Operators. He is the President of the European Mathematical Society for the period 2007- 2010. Tamara Rozhkovskaya Sobolev Institute of Mathematics SB RAS (Russia) and an independent publisher Editors and Authors are exclusively invited to contribute to volumes highlighting recent advances in various fields of mathematics by the Series Editor and a founder of the IMS Tamara Rozhkovskaya. Cover image: Vladimir Maz'ya


Book
Proofs from THE BOOK
Authors: --- ---
ISBN: 9783642008566 9783642008559 Year: 2010 Publisher: Berlin Heidelberg Springer Berlin Heidelberg Imprint Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This revised and enlarged fourth edition of "Proofs from THE BOOK" features five new chapters, which treat classical results such as the "Fundamental Theorem of Algebra", problems about tilings, but also quite recent proofs, for example of the Kneser conjecture in graph theory. The new edition also presents further improvements and surprises, among them a new proof for "Hilbert's Third Problem". From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures, and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately, and the proofs are brilliant. Moreover, the exposition makes them transparent. ..." LMS Newsletter, January 1999


Book
Théorie de Morse et homologie de Floer
Authors: ---
ISBN: 2759809218 1283054698 9786613054692 2759807304 9782759807307 9781283054690 9782759805181 9782271070876 9782789505181 9782759809219 6613054690 Year: 2010 Publisher: Les Ulis : Paris : EDP Sciences ; CNRS éditions,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d’Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l’« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l’étude sont alors plus compliqués et nécessitent l’introduction de méthodes d’analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l’ouvrage contient en appendice la présentation d’un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés – géométrie différentielle, topologie algébrique et analyse – auxquels le lecteur pourra se référer si besoin. L’ouvrage est issu d’un cours de M2 donné à l’université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.


Book
Around the Research of Vladimir Maz'ya II
Authors: ---
ISSN: 15715485 ISBN: 9781441913432 9781441913425 1441913424 1282834827 9786612834820 1441913432 Year: 2010 Volume: 12 Publisher: New York, NY Springer New York

Loading...
Export citation

Choose an application

Bookmark

Abstract

International Mathematical Series Volume 12 Around the Research of Vladimir Maz'ya II Partial Differential Equations Edited by Ari Laptev Numerous influential contributions of Vladimir Maz'ya to PDEs are related to diverse areas. In particular, the following topics, close to the scientific interests of V. Maz'ya are discussed: semilinear elliptic equation with an exponential nonlinearity resolvents, eigenvalues, and eigenfunctions of elliptic operators in perturbed domains, homogenization, asymptotics for the Laplace-Dirichlet equation in a perturbed polygonal domain, the Navier-Stokes equation on Lipschitz domains in Riemannian manifolds, nondegenerate quasilinear subelliptic equations of p-Laplacian type, singular perturbations of elliptic systems, elliptic inequalities on Riemannian manifolds, polynomial solutions to the Dirichlet problem, the first Neumann eigenvalues for a conformal class of Riemannian metrics, the boundary regularity for quasilinear equations, the problem on a steady flow over a two-dimensional obstacle, the well posedness and asymptotics for the Stokes equation, integral equations for harmonic single layer potential in domains with cusps, the Stokes equations in a convex polyhedron, periodic scattering problems, the Neumann problem for 4th order differential operators. Contributors include: Catherine Bandle (Switzerland), Vitaly Moroz (UK), and Wolfgang Reichel (Germany); Gerassimos Barbatis (Greece), Victor I. Burenkov (Italy), and Pier Domenico Lamberti (Italy); Grigori Chechkin (Russia); Monique Dauge (France), Sebastien Tordeux (France), and Gregory Vial (France); Martin Dindos (UK); Andras Domokos (USA) and Juan J. Manfredi (USA); Yuri V. Egorov (France), Nicolas Meunier (France), and Evariste Sanchez-Palencia (France); Alexander Grigor'yan (Germany) and Vladimir A. Kondratiev (Russia); Dmitry Khavinson (USA) and Nikos Stylianopoulos (Cyprus); Gerasim Kokarev (UK) and Nikolai Nadirashvili (France); Vitali Liskevich (UK) and Igor I. Skrypnik (Ukraine); Oleg Motygin (Russia) and Nikolay Kuznetsov (Russia); Grigory P. Panasenko (France) and Ruxandra Stavre (Romania); Sergei V. Poborchi (Russia); Jurgen Rossmann (Germany); Gunther Schmidt (Germany); Gregory C. Verchota (USA). Ari Laptev Imperial College London (UK) and Royal Institute of Technology (Sweden) Ari Laptev is a world-recognized specialist in Spectral Theory of Differential Operators. He is the President of the European Mathematical Society for the period 2007- 2010. Tamara Rozhkovskaya Sobolev Institute of Mathematics SB RAS (Russia) and an independent publisher Editors and Authors are exclusively invited to contribute to volumes highlighting recent advances in various fields of mathematics by the Series Editor and a founder of the IMS Tamara Rozhkovskaya. Cover image: Vladimir Maz'ya.

Listing 1 - 6 of 6
Sort by