Listing 1 - 1 of 1 |
Sort by
|
Choose an application
An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples.
Orbifolds. --- Topology --- Manifolds (Mathematics) --- Orbifolds --- 512.7 --- 515.14 --- Analysis situs --- Position analysis --- Rubber-sheet geometry --- Geometry --- Polyhedra --- Set theory --- Algebras, Linear --- Geometry, Differential --- 515.14 Algebraic topology --- Algebraic topology --- 512.7 Algebraic geometry. Commutative rings and algebras --- Algebraic geometry. Commutative rings and algebras --- Topology. --- Homology theory. --- Quantum theory. --- String models. --- Models, String --- String theory --- Nuclear reactions --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Cohomology theory --- Contrahomology theory
Listing 1 - 1 of 1 |
Sort by
|