Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Tumor angiogenesis is the main process responsible for the formation of new blood vessels that promote tumor growth and metastasis. This process is driven by potent pro-angiogenic factors that are predominant in the tumor environment and are produced by both malignant cells and the host cells recruited to the tumor site. Tumor environment is characterized by the imbalance between pro-angiogenic and anti-angiogenic factors, which drives the construction of numerous but structurally defective vessels. These poorly perfused and abnormal vessels significantly contribute to the tumor pathology not only by supporting the expansion of the tumor mass but also by promoting chronic inflammation, enhancing thrombosis, impeding drug delivery, and disseminating tumor cells. These problems associated with tumor vasculature continue to attract great attention of scientists and clinicians interested in advancing the understanding of tumor biology and development of new drugs. This book complies a series of reviews that cover a broad spectrum of current topics related to the pathology of tumor blood vessels including mechanisms inducing new vessels, identification of new targets for inhibition of tumor angiogenesis, and potential clinical use of known and novel anti-angiogenic therapies. The book provides an update on tumor angiogenesis that could be useful for oncologists, cancer researchers and biologists with interests in vascular and endothelial cell behavior in the context of cancer.
Tumors --- Growth. --- Cancer --- Neoplasm growth --- Tumor growth --- Growth --- Oncology
Choose an application
Neoplasm refers to an abnormal tissue growth that arises as a consequence of rapid cell proliferation and continues to grow abnormally even after terminating the stimuli that had instigated the change. It lacks partial or complete functional coordination with that of the normal tissues. Neoplasms are classified depending on the degree and type of tissues involved. Carcinogenesis is a multistep process where a plethora of endogenous and exogenous factors turns out genetic and epigenetic modifications, which collectively amend some critical cellular pathways controlling the proliferation, apoptosis, and differentiation. The cells having aberrant modifications are transformed into malignant ones of which the clonal expansion results in the development of cancer. This book provides the reader with a comprehensive overview of various cancer types along with their molecular mechanisms of initiation and progression. It also describes the current knowledge about the state-of-the-art measures being employed in cancer diagnosis and therapeutics. Particular attention is paid to make this book equally useful for students, practitioners, and expert scientists.
Tumors --- Growth. --- Cancer --- Neoplasm growth --- Tumor growth --- Growth --- Life Sciences --- Genetics and Molecular Biology --- Oncology --- Biochemistry --- Cancer Biology
Choose an application
A wide range of ongoing research in the areas of controller design and information engineering reveals that the pace of technological change in this domain seems to be accelerating. The primary focus is on futuristic segments ranging from robotics, genomics to chemical feedstock and electrical storage. The main objective of this special issue was to provide a forum for researchers and practitioners to exchange their latest theoretical and technological achievements and to identify critical issues and challenges for future investigation on topics regarding advanced automation and control techniques based on information system technologies.
fractional calculus --- fractional-order control --- experimental tuning --- smart beam --- vibration suppression --- industrial internet of things --- prediction strategy --- proactive historian --- water industry --- lithium-ion batteries --- fast charging --- battery ageing --- sample and hold --- hierarchical clustering --- multidimensional scaling --- distances --- moving horizon estimation --- Kalman filter --- parameter estimation --- tumor growth estimation --- vibration --- control --- linear quadratic regulator (LQR) --- algebraic Riccati equation --- iteration --- state observer --- viscoelasticity --- mechatronic system --- 6DOF platform --- co-simulation platform --- robust control --- fractional order PID control --- linear parameter varying system --- n/a
Choose an application
Control and automation systems are at the heart of our every day lives. This book is a collection of novel ideas and findings in these fields, published as part of the Special Issue on Control and Automation. The core focus of this issue was original ideas and potential contributions for both theory and practice. It received a total number of 21 submissions, out of which 7 were accepted. These published manuscripts tackle some novel approaches in control, including fractional order control systems, with applications in robotics, biomedical engineering, electrical engineering, vibratory systems, and wastewater treatment plants. This Special Issue has gathered a selection of novel research results regarding control systems in several distinct research areas. We hope that these papers will evoke new ideas, concepts, and further developments in the field.
fractional calculus --- fractional-order control --- experimental tuning --- smart beam --- vibration suppression --- industrial internet of things --- prediction strategy --- proactive historian --- water industry --- lithium-ion batteries --- fast charging --- battery ageing --- sample and hold --- hierarchical clustering --- multidimensional scaling --- distances --- moving horizon estimation --- Kalman filter --- parameter estimation --- tumor growth estimation --- vibration --- control --- linear quadratic regulator (LQR) --- algebraic Riccati equation --- iteration --- state observer --- viscoelasticity --- mechatronic system --- 6DOF platform --- co-simulation platform --- robust control --- fractional order PID control --- linear parameter varying system --- n/a
Choose an application
The plant-derived polyphenol curcumin has been used in promoting health and combating disease for thousands of years. Its therapeutic effects have been successfully utilized in Ayurvedic and Traditional Chinese Medicine in order to treat inflammatory diseases. Current results from modern biomolecular research reveal the modulatory effects of curcumin on a variety of signal transduction pathways associated with inflammation and cancer. In this context, curcumin’s antioxidant, anti-inflammatory, anti-tumorigenic, and even anti-metastatic activities are discussed. On the cellular level, the reduced activity of several transcription factors (such as NFkB or AP-1) and the suppression of inflammatory cytokines, matrix degrading enzymes, metastasis related genes and even microRNAs are reported. On functional levels, these molecular effects translate into reduced proliferative, invasive, and metastatic capacity, as well as induced tumor cell apoptosis. All these effects have been observed not only in vitro but also in animal models. In combination with anti-neoplastic drugs like Taxol, kinase inhibitors, and radiation therapy, curcumin potentiates the drugs’ therapeutic power and can protect against undesired side effects. Natural plant-derived compounds like curcumin have one significant advantage: They do not usually cause side effects. This feature qualifies curcumin for primary prevention in healthy persons with a predisposition to cancer, arteriosclerosis, or chronic inflammatory diseases. Nonetheless, curcumin is considered safe, although potential toxic effects stemming from high dosages, long-term intake, and pharmacological interactions with other compounds have yet to be assessed. This Special Issue examines in detail and updates current research on the molecular targets, protective effects, and modes of action of natural plant-derived compounds and their roles in the prevention and treatment of human diseases.
minerals --- cancer treatment --- chitosan --- n/a --- neurodegeneration --- antioxidant activity --- senescence --- tumor proliferation --- nanoparticles --- antimicrobial agents --- oxidative metabolites --- drug discovery --- Akt/mTOR signaling --- micronutrients --- ulcerative colitis --- transmission electron microscopy --- metabolic reprogramming --- curcumin --- death receptor --- chaperone-mediated autophagy --- wound healing --- brain ischemia --- autophagy --- Alzheimer’s disease --- genes --- transthyretin --- inflammatory bowel disease --- cellular pathway --- centrifugal partition chromatography --- nutrition --- amyloid --- Curcuma longa --- protein aggregation --- supportive care --- IL-17 --- senolytics --- complementary medicine --- macronutrients --- structure activity relationship --- gastroprotection --- Zingiberaceae --- anti-inflamation --- TLC bioautography --- microbiota --- glioblastoma multiforme --- amyloidosis --- SHMT2 --- antioxidants --- silica --- apoptosis --- reflux esophagitis --- gastric ulcer --- TLC-MS --- anti-cancer --- anticancer --- ImageJ --- anti-tumor --- delivery system --- wound --- Helicobacter pylori --- direct protein binding --- protein misfolding --- tumor growth --- diet --- Crohn’s disease --- hydrostatic counter-current chromatography --- ageing --- renal cell cancer --- gastric cancer --- amino-acids --- STAT3 --- mechanism of action --- inflamm-aging --- mitophagy --- necrotizing enterocolitis --- cell cycling --- vitamins --- turmeric tuber --- cancer --- tau protein --- Alzheimer's disease --- Crohn's disease
Choose an application
In this book, we present a compilation of original research articles as well as review articles that are focused on improving our understanding of the molecular and cellular mechanisms by which cancer cells adapt to their microenvironment. These include the interplay between cancer cells and the surrounding microenvironmental cells (e.g., macrophages, tumor-infiltrating lymphocytes and myeloid cells) and microenvironmental environments (e.g., oxidative stress, pH, hypoxia) and the implications of this dynamic interaction to tumor radioresistance, chemoresistance, invasion and metastasis. Finally, the importance and relevance of these findings are translated to cancer therapy.
hypoxia --- macrophages --- colon cancer --- tumor microenvironment --- immune cell infiltration --- prognosis --- feline mammary carcinoma --- PD-1 --- PD-L1 --- CTLA-4 --- TNF-α --- biomarkers --- immunotherapy --- cancer --- histone modification --- inhibitor --- KDM5B --- molecular docking --- repurposing --- cancer acidity --- hyperosmolarity --- cross-presentation --- tumour microenvironment --- syngeneic model --- prostate cancer --- radiotherapy --- preclinical modelling --- myeloid-derived suppressor cells --- biomarker --- stroma --- cancer-associated fibroblast (CAF) --- extracellular matrix (ECM) --- cytokine/chemokine --- growth factors --- pro- and anti-tumor immune cells --- immunomodulatory roles --- radiotherapy dose fractionation --- radioresistance --- radiosensitivity --- breast cancer --- S100A10 (p11) --- tumor growth --- tumor progression --- metastasis --- carcinoma --- mammary gland --- triple negative --- pre-metastatic niche --- pro-inflammatory cytokines --- clinical trials --- evolutionary therapy --- darwinian evolution --- cancer cells subpopulations --- diclofenac --- koningic acid --- spheroid --- 3D co-culture --- microenvironment --- resistance --- myeloid cells --- cancer development --- molecular subtypes of pancreatic cancer --- chemotherapy response --- pancreatic stellate cells --- regulatory T cells --- tumor-associated macrophages --- myeloid derived suppressor cells --- glioblastoma (GB) --- Hypoxia Inducible Factor (HIF) --- glioma stem cells (GSC) --- oxidative stress --- reactive oxygen species --- plasmin --- plasminogen --- S100A10 --- uPA --- uPAR --- PAI-1 --- PAI-2 --- cancer stem cells --- cancer recurrence --- therapeutic resistance --- signaling pathways --- targeted therapy --- head and neck cancer --- lung cancer --- bladder cancer
Choose an application
Nature continuously produces biologically useful molecules and provides humankind with life-saving drugs or therapies. Natural products (NPs) offer a vast, unique and fascinating chemical diversity and these molecules have evolved for optimal interactions with biological macromolecules. Moreover, natural products feature pharmacologically active pharmacophores which are pharmaceutically validated starting points for the development of new lead compounds. Over half of all approved (from 1981 to 2014) small-molecule drugs derived from NPs, including unaltered NPs, NPs synthetic derivatives and synthetic natural mimics, originated from a NPs pharmacophore or template. According to the FDA, NPs and their derivatives represent over one-third of all FDA-approved new drugs, in particular for anticancer/antibiotic lead compounds, which are remarkably enriched with NPs.
multi-component reaction --- fusidic acid --- TEMPO-conjugate --- electron paramagnetic resonance (EPR) spectroscopy --- caspase-3 --- incomptine A --- sesquiterpene lactone --- Decachaeta incompta --- cytotoxic activity --- iTRAQ --- apoptosis --- ROS production --- violacein --- hepatocellular carcinoma --- proliferation --- stemness --- natural products --- tumor microenvironment (TME) --- lung cancer --- phytochemicals --- botanical agents --- steroidal alkaloids --- solanidane alkaloids --- demissidine --- solanidine --- flavonoids --- coronavirus --- SARS-CoV-2 --- SARS-CoV --- MERS-CoV --- anticancer activity --- apoptosis resistance --- ophiobolin A --- polygodial --- Wittig reaction --- melanoma --- tumor heterogeneity --- pregnancy --- anti-tumor peptides --- in vitro model --- medicinal herbs --- cancer treatment --- cancer stem cells --- drug resistance --- metastasis --- RCE-4 --- PCD --- ATG 4B --- the Bcl-2–Beclin 1 complex --- Sparticola junci --- structure elucidation --- ECD-TDDFT --- COX inhibitory --- molecular docking --- antiproliferative --- cytotoxic --- Sepedonium ampullosporum --- peptaibols --- ampullosporin --- glutamic acid methyl ester --- solid-phase peptide synthesis --- antifungal --- anticancer --- target identification --- kaempferol --- docking --- DARTS --- Src --- breast cancer --- butein --- frondoside-A --- STAT3 --- angiogenesis --- invasion --- viability --- tumor growth --- marine fungi --- Cosmospora sp. --- soudanone --- Magnaporthe oryzae --- co-culture --- phytopathogen --- molecular networking --- metabolomics --- bispecific antibody --- Trypsiligase --- click chemistry --- biorthogonal chemistry --- antibody engineering --- n/a --- the Bcl-2-Beclin 1 complex
Listing 1 - 7 of 7 |
Sort by
|