Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This contribution presents an analytical and a numerical model for predicting the effective thermal conductivity of porous electrode coatings as a function of microstructure parameters. Both models account for the morphological parameters and the thermal bulk materials of the constitutive cell components. The results of both models have been successfully verified against each other and validated with literature data as well as own experimental measurements.
Mechanical engineering & materials --- thermal conductivity --- thermal transport properties --- porous electrodes --- lithium-ion cell --- lithium-ion battery --- Wärmeleitfähigkeit --- thermische Transporteigenschaften --- poröse Elektroden --- Lithium-Ionen Zelle --- Lithium-Ionen Batterie
Choose an application
This volume contains recent developments in the field of thermoelectric with a focus on materials research, including inorganic, polymer and composite materials as well as different approaches to materials processing. These studies are representative of some of the continuing technological development in the field of thermoelectrics.
materials processing for thermoelectrics --- structure-property and processing-property relationships --- transport properties --- mechanical properties --- crystal growth and synthetic routes --- Materials --- Crystal growth. --- Crystals --- Research. --- Thermal properties. --- Electric properties. --- Crystallization --- Grain boundaries --- Twinning (Crystallography) --- Materials research --- Growth
Choose an application
This Special Issue will compile recent developments in the field of metal oxide thin film deposition. The articles presented in this Special Issue will cover various topics, ranging from, but not limited to, the optimization of deposition methods, thin film preparations, the functionalization of surfaces with targeted applications, nanosensors, catalysis, electronic devices, biocidal coating, and the synthesis of nanostructures via the accurate control of thin film deposition methods, among others. Topics are open to metal oxide thin film deposition and characterization for the development of applications.
plasma electrolytic oxidation --- electrical characteristic --- anodizing --- SEM --- aluminum --- low-temperature fabrication --- ions adsorption --- IGZO TFTs --- device performance --- oxidation --- wide-bandgap semiconductor --- α-Ga2O3 --- mist chemical vapor deposition (mist-CVD) --- carrier gas --- transparent semiconductor --- cellulose --- tribological performance --- stability --- MAO (micro-arc oxidation) coating --- self-lubricating --- gadolinium cobaltites --- atomic layer deposition --- β-diketonates --- ozone --- preferential crystal growth orientation --- high-aspect-ratio substrate --- metal oxide thin films --- ALD --- crystallography --- epitaxy --- NiTiO3 --- tin oxide --- thin films --- atmospheric pressure chemical vapour deposition transport properties --- magnetoresistance --- impedance spectroscopy --- charge carrier mobility --- dynamic hot-probe measurements --- indium-tin oxide --- aluminum-zinc oxide --- magnetron co-sputtering --- bismuth ferrite --- La-doping --- piezoelectricity --- sol–gel --- n/a --- sol-gel
Choose an application
This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication
GFET --- RF --- access region --- superconducting devices --- photodetectors --- nanostructured materials --- nanostructured and microstructured superconductors --- high temperature superconductors --- bolometers --- quantum electronics --- noise spectroscopy --- granular aluminum oxide --- superconducting nanowires --- current-resistance effects --- iron-based superconductors --- nanowires --- single-photon detectors --- superconductivity --- transport properties --- energy gap --- superconducting order parameter --- proximity effect --- nano-junction --- Andreev reflection --- chemical --- vapor deposition --- graphene oxide --- transition-metal dichalcogenides --- WS2 --- perfect graphene (p–Gr) --- defective graphene (d–Gr) --- Gr/Si slab --- diffusion barrier --- CI-NEB calculation --- n/a --- perfect graphene (p-Gr) --- defective graphene (d-Gr)
Choose an application
Based on five Special Issues in Coatings, this e-book contains a series of 15 articles demonstrating actual perspectives and new trends in advanced coatings in buildings. Innovative materials and multiperformance solutions provide a basis, contributing also to the better protection of buildings’ surfaces during the service life, and the users’ wellbeing.
geopolymer --- metakaolin --- titanium oxide --- physical and mechanical properties --- polystyrene --- DOPA --- polydopamine --- antifouling --- polyethylene glycol --- Pluronic --- QCM-D --- coating --- building materials --- bacterial growth --- proliferation --- biofilm --- antibacterial --- hydrophobic --- photocatalytic --- sonochemistry --- mortar --- polydimethylsiloxane --- phenylmethylsilicone oil --- viscosity --- additive amount --- leach --- particle size --- distribution characteristics --- contaminated particle --- porcelain insulator --- adhesion simulation model --- cellulose --- aerogel --- thermal insulation --- building envelope --- silica --- ceramic coating --- fly ash --- anti-fouling --- slagging --- boiler --- energy efficiency --- biofilms --- DEMM --- DEME --- PMMA --- polymer brush coating --- polysaccharide --- protein --- lipid --- nucleic acid --- Raman spectroscopy --- AgNPs --- antibacterial coatings --- polyetheretherketone films --- tollens method --- acrylic resin --- bio-filler --- cone calorimeter --- heat release rate --- intumescent coating --- steel --- green roofs --- biological coatings --- hydraulic performance --- thermal performance --- sustainable construction certification --- LEED --- BREEAM --- CASBEE --- BEAM --- ESGB --- glass waste --- copper oxide --- antibacterial surfaces --- hydrophobic products --- silicon-based compounds --- claddings --- durability --- moisture transport properties --- recycled and reused materials --- drainage --- dead load --- protective coatings --- air-purifying coatings --- anti-fouling coatings --- ultra-low biofouling coatings
Choose an application
With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.
chitosan --- graphene oxide --- microstructure --- autoxidation --- heavy metals --- polycaprolactone --- precipitation --- thermosetting polymers --- thermal degradation --- humidity sensor --- asphalt rubber --- tung oil --- nanobiocomposites --- ionic liquid --- GC-MS --- hybrid nonisocyanate polyurethane --- physicochemical properties --- alginate sponge --- Bioflex --- dimer acid --- bio-asphalt --- benzoyl cellulose --- Peptone --- transparent wood --- biocomposite --- nanoclays --- storage stability --- solvent- and catalyst-free --- microcellulose fiber --- lignin-containing cellulose nanofibrils --- polylactic acid (PLA) --- bio-inspired interfaces --- polyhydroxyalkanoates --- strain sensor --- enzymatic saccharification --- headspace solid phase microextraction --- PHBV --- electrical resistance --- melt condensation --- cement --- solution casting --- orange waste --- hybrid composites --- biopolymers --- TEMPO oxidation --- pollutant adsorbents --- Escherichia coli --- bio-nanocomposites --- TiO2 anatase --- metal binding --- liquid natural rubber --- hydrotropic treatment --- metal chloride --- feast-famine --- biomass resources --- wood --- electroless deposition --- one-pot synthesis --- thermoplastic starch --- films --- lignin-carbohydrate complex --- cellulose --- corn starch --- microencapsulated phase change material (MPCM) --- differential scanning calorimetry --- compatibility --- natural fibers --- workability --- silkworm cocoons --- lignin content --- polylactic acid --- porous structure --- electrospinning --- nanocellulose fibers --- H2O2 bleaching treatment --- polysaccharides --- mixing sequence --- porosity --- lignocellulosic nanofibrils --- dense structure --- alkali lignin --- polydopamine coating --- nuclear magnetic resonance --- cationic dyes --- poly(lactic acid) and composite films --- endothermic effect --- HSQC-NMR --- Microbial nutrient --- n/a --- toughening --- X-ray diffraction --- water resistance --- waste biomass --- lignin --- UV light --- ultrafiltration --- two-step lyophilization --- mechanical degradation --- bio-based --- methylene blue --- stearoyl cellulose --- ONP fibers --- anionic surfactants --- Hatscheck process --- osteoblast proliferation --- resource recovery --- dissolution --- copper coating --- bacterial cellulose --- hydrogel --- iron chelation --- knotwood --- sensitivity --- mixed microbial cultures --- dimensional stability --- volatiles --- lignocellulose --- Artemisia vulgaris --- surface modification --- PHA --- crosslinked microparticles --- pyrene --- composites --- galactoglucomannan --- polymeric composites --- kaempferol --- tannin-furanic foam --- Solanyl --- wastewater treatments --- adsorption capacity --- heat treatment --- thermal gravimetric analysis --- WAXS --- unsaturated polyester resins --- pulp fibers --- free-radical polymerization --- larixol --- delignification --- antifouling --- chemical composition --- hemicellulose --- tissue engineering --- extrusion-compounding --- membrane --- photodegradation --- structural plastics --- scanning electron microscope --- phenanthrene --- thermal properties --- immobilized TEMPO --- Staphylococcus aureus --- adsorption --- wood modification --- structure–property relationship --- physical property --- film --- mechanical properties --- tannin --- Bio-based foams --- latex state --- paper-based scaffolds --- skincare --- pyrolysis mechanism --- emulsion-solvent evaporation method --- bioplastics --- imidazolium --- fractionation --- cost --- fiber-cement --- lyocell fiber --- recycling --- kenaf fiber --- thermal stability --- transport properties --- SAXS --- silanization --- cellulose nanofibers --- taxifolin --- tannin polymer --- vibrational spectroscopy --- robust fiber network --- nanocelluloses --- poly(lactic acid) --- Anti-bacterial silver nanoparticle --- cellulose nanocrystals --- structure-property relationship
Listing 1 - 6 of 6 |
Sort by
|