Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Success or failure of biomaterials, whether tissue engineered constructs, joint and dental implants, vascular grafts, or heart valves, depends on molecular-level events that determine subsequent responses of cells and tissues. This book presents the latest developments and state-of-the-art knowledge regarding protein, cell, and tissue interactions with both conventional and nanophase materials. Insight into these biomaterial surface interactions will play a critical role in further developments in fields such as tissue engineering, regenerative medicine, and biocompatibility of implanted materials and devices. With chapters written by leaders in their respective fields, this compendium will be the authoritative source of information for scientists, engineers, and medical researchers seeking not only to understand but also to control tissue-biomaterial interactions.
Biocompatibility. --- Biological interfaces. --- Biomedical materials -- Surfaces. --- Biomedical materials --- Biocompatibility --- Biological interfaces --- Health & Biological Sciences --- Biomedical Engineering --- Surfaces --- Surfaces. --- Biocompatible materials --- Biomaterials --- Medical materials --- Medicine --- Biointerfaces --- Biological surfaces --- Biosurfaces --- Interfaces, Biological --- Surface sciences (Biology) --- Surfaces (Biology) --- Biological compatibility --- Biological tolerance --- Biomedical compatibility --- Biomedical tolerance --- Biotolerance --- Compatibility, Biological --- Compatibility, Biomedical --- Tolerance, Biological --- Tolerance, Biomedical --- Materials --- Materials science. --- Molecular biology. --- Cell biology. --- Biophysics. --- Biological physics. --- Biomedical engineering. --- Biomaterials. --- Materials Science. --- Biomedical Engineering. --- Cell Biology. --- Biophysics and Biological Physics. --- Molecular Medicine. --- Biomedical engineering --- Prosthesis --- Biochemistry --- Biophysics --- Surface chemistry --- Cytology. --- Medicine. --- Biomedical Engineering and Bioengineering. --- Biological and Medical Physics, Biophysics. --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists --- Clinical engineering --- Medical engineering --- Bioengineering --- Engineering --- Health Workforce --- Bioartificial materials --- Hemocompatible materials --- Molecular biochemistry --- Molecular biophysics --- Biomolecules --- Systems biology --- Biological physics --- Physics --- Biomaterials (Biomedical materials) --- Biomedical materials - Surfaces
Choose an application
The development of materials for any replacement or regeneration application should be based on the thorough understanding of the structure to be substituted. This is true in many fields, but particularly exigent in substitution and regeneration medicine. The demands upon the material properties largely depend on the site of application and the function it has to restore. Ideally, a replacement material should mimic the living tissue from a mechanical, chemical, biological and functional point of view. Of course this is much easier to write down than to implement in clinical practice. Mineralized tissues such as bones, tooth and shells have attracted, in the last few years, considerable interest as natural anisotropic composite structures with adequate mechanical properties. In fact, Nature is and will continue to be the best materials scientist ever. Who better than nature can design complex structures and control the intricate phenomena (processing routes) that lead to the final shape and structure (from the macro to the nano level) of living creatures? Who can combine biological and physico-chemical mechanisms in such a way that can build ideal structure-properties relationships? Who, else than Nature, can really design smart structural components that respond in-situ to exterior stimulus, being able of adapting constantly their microstructure and correspondent properties? In the described philosophy line, mineralized tissues and biomineralization processes are ideal examples to learn-from for the materials scientist of the future.
Biomineralization --- Prosthesis Design --- Biological compatibility --- Biological tolerance --- Biomedical compatibility --- Biomedical tolerance --- Biotolerance --- Compatibility, Biological --- Compatibility, Biomedical --- Tolerance, Biological --- Tolerance, Biomedical --- Biomedical materials --- Biocompatibility --- Engineering. --- Biotechnology. --- Biochemical engineering. --- Inorganic chemistry. --- Materials science. --- Engineering, general. --- Biochemical Engineering. --- Inorganic Chemistry. --- Characterization and Evaluation of Materials. --- Ceramics, Glass, Composites, Natural Methods. --- Material science --- Physical sciences --- Inorganic chemistry --- Chemistry --- Inorganic compounds --- Bio-process engineering --- Bioprocess engineering --- Biochemistry --- Biotechnology --- Chemical engineering --- Genetic engineering --- Construction --- Industrial arts --- Technology --- Chemistry, inorganic. --- Surfaces (Physics). --- Ceramics, Glass, Composites, Natural Materials. --- Physics --- Surface chemistry --- Surfaces (Technology) --- Ceramics. --- Glass. --- Composites (Materials). --- Composite materials. --- Composites (Materials) --- Multiphase materials --- Reinforced solids --- Solids, Reinforced --- Two phase materials --- Materials --- Amorphous substances --- Ceramics --- Glazing --- Ceramic technology --- Industrial ceramics --- Keramics --- Building materials --- Chemistry, Technical --- Clay --- Implantable biomaterials --- Biomimetic materials
Listing 1 - 2 of 2 |
Sort by
|