Listing 1 - 10 of 38 | << page >> |
Sort by
|
Choose an application
The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.
Choose an application
This book provides an introduction to the theory of elliptic modular functions and forms, a subject of increasing interest because of its connexions with the theory of elliptic curves. Modular forms are generalisations of functions like theta functions. They can be expressed as Fourier series, and the Fourier coefficients frequently possess multiplicative properties which lead to a correspondence between modular forms and Dirichlet series having Euler products. The Fourier coefficients also arise in certain representational problems in the theory of numbers, for example in the study of the number of ways in which a positive integer may be expressed as a sum of a given number of squares. The treatment of the theory presented here is fuller than is customary in a textbook on automorphic or modular forms, since it is not confined solely to modular forms of integral weight (dimension). It will be of interest to professional mathematicians as well as senior undergraduate and graduate students in pure mathematics.
Choose an application
This book provides a comprehensive account of a key (and perhaps the most important) theory upon which the Taylor-Wiles proof of Fermat's last theorem is based. The book begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. It contains a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula and includes several new results from the author. The book will be of interest to graduate students and researchers in number theory (including algebraic and analytic number theorists) and arithmetic algebraic geometry.
Choose an application
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry.
Forms, Modular --- Forms (Mathematics) --- Quantics --- Algebra --- Mathematics --- Modular forms
Choose an application
Tau functions are a central tool in the modern theory of integrable systems. This volume provides a thorough introduction, starting from the basics and extending to recent research results. It covers a wide range of applications, including generating functions for solutions of integrable hierarchies, correlation functions in the spectral theory of random matrices and combinatorial generating functions for enumerative geometrical and topological invariants. A self-contained summary of more advanced topics needed to understand the material is provided, as are solutions and hints for the various exercises and problems that are included throughout the text to enrich the subject matter and engage the reader. Building on knowledge of standard topics in undergraduate mathematics and basic concepts and methods of classical and quantum mechanics, this monograph is ideal for graduate students and researchers who wish to become acquainted with the full range of applications of the theory of tau functions.
Forms, Modular. --- Mathematical physics. --- Hamiltonian systems. --- Integral equations. --- Grassmann manifolds.
Choose an application
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups Gammasubsetmathrm{PSL}_2({mathbb{R}}). In the case that Gamma is the modular group mathrm{PSL}_2({mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all Gamma-invariant eigenfunctions of the Laplace operator. For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.
Forms, Modular. --- Forms (Mathematics) --- Cohomology operations. --- Algebraic topology.
Choose an application
Nombres, Théories des --- Formes modulaires --- Number theory. --- Forms, Modular --- Formes quadratiques --- Invariants --- Invariants
Choose an application
Nombres, Théorie des --- Formes modulaires --- Number theory --- Forms, Modular --- Nombres, Théorie des
Choose an application
Forms, Modular. --- Forms (Mathematics) --- Cohomology operations. --- Algebraic topology. --- Formes modulaires --- Formes (Mathématiques) --- Opérations cohomologiques --- Topologie algébrique --- Forms, modular --- Forms (mathematics) --- Cohomology operations --- Algebraic topology --- Formes (Mathématiques) --- Opérations cohomologiques --- Topologie algébrique
Choose an application
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows the basics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically. Ultimately, we concentrate on the following two themes: (I) The correspondence between the forms of half-integral weight and those of integral weight. (II) The arithmeticity of various Dirichlet series associated with modular forms of integral or half-integral weight. Goro Shimura is currently a professor emeritus of mathematics at Princeton University.
Forms, Modular. --- Forms, Modular --- Functions, Theta --- Engineering & Applied Sciences --- Mathematics --- Physical Sciences & Mathematics --- Algebra --- Applied Mathematics --- Forms, Quadratic. --- Quadratic forms --- Modular forms --- Mathematics. --- Numerical analysis. --- Numerical Analysis. --- Mathematical analysis --- Math --- Science --- Diophantine analysis --- Forms, Binary --- Number theory --- Forms (Mathematics)
Listing 1 - 10 of 38 | << page >> |
Sort by
|