Listing 1 - 10 of 53 | << page >> |
Sort by
|
Choose an application
This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking
Choose an application
In July 2000 a conference was held to honour the 65th birthdays of four of the leading international figures in the field of quantum many-body theory. The joint research careers of John Clark, Alpo Kallio, Manfred Ristig and Sergio Rosati total some 150 years, and this festschrift celebrated their achievements. These cover a remarkably wide spectrum. The topics in this book reflect that diversity, ranging from formal aspects to real systems, including nuclear and subnuclear systems, quantum fluids and solids, quantum spin systems and strongly correlated electron systems. The book collects more
Choose an application
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of
Choose an application
This conference series is now firmly established as one of the premier series of international meetings in the field of many-body physics. The current volume maintains the tradition of covering the entire spectrum of theoretical tools developed to tackle important and current quantum many-body problems. It aims to foster the exchange of ideas and techniques among physicists working in diverse subfields of physics, such as nuclear and sub-nuclear physics, astrophysics, atomic and molecular physics, quantum chemistry, complex systems, quantum field theory, strongly correlated electronic systems
Choose an application
Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Indeed, its successes and importance were vividly illustrated prior to the conference by the sharing of the 1998 Nobel Prizes in both Physics and Chemistry by three many-body theorists. Two of those Nobel laureates, Walter Kohn and Bob Laughlin, delivered invited lectures at this meeting, the tenth in the series of International Conferenc
Choose an application
This volume contains the main contributions to the 14th International Conference on Recent Progress in Many-Body Theories (RPMBT14) held at the Technical University of Catalonia, Spain, in July 2007. This conference, which was first held in Trieste in 1979, is devoted to new developments in the field of many-body theories, which are being applied and developed in a rapidly growing number of fields. The emphasis is twofold: progress in the technical aspects of microscopic theories and a review of recent applications of many-body techniques. In addition to the more traditional topics, such as nu
Choose an application
The N-body problem of 6n-12 degrees of freedom with twelve inherent constraints creates a difficult situation in working the equations of motion for three or more masses. This necessitates the mathematical physicist remedying the situation by determining proper constraints to get past this dilemma by requiring a specialized set of conditions to define a unique problem.This book addresses these issues and provides a general approach to solving certain classes of n-body problems, thereby showing that there exists a large body of mass configurations that can be formulated and solved deterministically. The problems provided at the end of each chapter will allow the reader to progress at a measured rate in understanding binary, trinary, and quadruple structured configurations, as well as subsystem perturbations, particle velocities, state vectors, period ratios, and sphere of influence.As an everyday resource in the working environment, this book gives the reader the prerequisite tools to deal with n-body configuration structures, whether in the real universe or in pursing purely theoretical problems.
Choose an application
This book develops the basic formalism and theoretical techniques for studying relativistic quantum field theory at high temperature and density. Specific physical theories treated include QED, QCD, electroweak theory, and effective nuclear field theories of hadronic and nuclear matter. Topics covered include: functional integral representation of the partition function, diagrammatic expansions, linear response theory, screening and plasma oscillations, spontaneous symmetry breaking, Goldstone theorem, resummation and hard thermal loops, lattice gauge theory, phase transitions, nucleation theory, quark-gluon plasma, and color superconductivity. Applications to astrophysics and cosmology cover white dwarf and neutron stars, neutrino emissivity, baryon number violation in the early universe, and cosmological phase transitions. Applications to relativistic nucleus-nucleus collisions are also included. The book is written for theorists in elementary particle physics, nuclear physics, astrophysics, and cosmology. Released initially in 2006, this title has been reissued as an Open Access publication on Cambridge Core.
Quantum field theory. --- Particles (Nuclear physics) --- Many-body problem.
Choose an application
The two most important developments in nuclear physics were the shell model and the collective model. The former gives the formal framework for a description of nuclei in terms of interacting neutrons and protons. The latter provides a very physical but phenomenological framework for interpreting the observed properties of nuclei. A third approach, based on variational and mean-field methods, brings these two perspectives together in terms of the so-called unified models. Together, these three approaches provide the foundations on which nuclear physics is based. They need to be understood by e
Many-body problem. --- Nuclear collective models. --- Nuclear spectroscopy.
Choose an application
Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Its most powerful techniques are truly universal. They are constantly expanding to find new fields of application, while advances continue to be made in the more traditional areas. To commemorate the impending 80th birthdays of its two co-inventors, Firtz Coester and Hermann Kümmel, one such technique, namely the coupled cluster method, w
Many-body problem --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics
Listing 1 - 10 of 53 | << page >> |
Sort by
|