Listing 1 - 10 of 291 | << page >> |
Sort by
|
Choose an application
Regression Analysis --- Regression analysis --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling
Choose an application
Cet ouvrage expose de mani re d taill e l une des m thodes statistiques les plus courantes: la r gression. Apr?'s avoir pr sent la r gression lin aire simple et multiple, il s attache expliquer les fondements de la m thode, tant au niveau des choix op r?'s que des hypoth ses et de leur utilit . Ensuite sont d velopp?'s les outils permettant de v rifier les hypoth ses de base mises en uvre par la r gression. Une pr sentation simple des mod les d'analyse de la covariance et de la variance est effectu e. L ouvrage pr sente aussi les choix de mod les et certaines extensions de la r gression: lasso
Regression analysis. --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling
Choose an application
Mathematical statistics --- Regression analysis --- Analyse de régression --- Regression Analysis. --- Regression analysis. --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling --- Analyse de régression
Choose an application
Regression Analysis --- 519.233 --- Regression analysis --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling --- Parametric methods --- Regression analysis. --- 519.233 Parametric methods --- Statistique mathematique --- Regression
Choose an application
Regression Analysis --- Correlation (Statistics) --- Regression analysis --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling --- Least squares --- Mathematical statistics --- Probabilities --- Statistics --- Instrumental variables (Statistics) --- Graphic methods
Choose an application
Mathematical Statistics --- Mathematics --- Physical Sciences & Mathematics --- Regression analysis. --- Robust statistics. --- Statistics, Robust --- Distribution (Probability theory) --- Mathematical statistics --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling
Choose an application
"This book offers a practical, concise introduction to regression analysis for upper-level undergraduate students of diverse disciplines including, but not limited to statistics, the social and behavioral sciences, MBA, and vocational studies. The book's overall approach is strongly based on an abundant use of illustrations, examples, case studies, and graphics. It emphasizes major statistical software packages, including SPSS(r), Minitab(r), SAS(r), R, and R/S-PLUS(r). Detailed instructions for use of these packages, as well as for Microsoft Office Excel(r), are provided on a specially prepared and maintained author web site. Select software output appears throughout the text. To help readers understand, analyze, and interpret data and make informed decisions in uncertain settings, many of the examples and problems use real-life situations and settings. The book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series and forecasting. New to this edition are more exercises, simplification of tedious topics (such as checking regression assumptions and model building), elimination of repetition, and inclusion of additional topics (such as variable selection methods, further regression diagnostic tests, and autocorrelation tests)"--
Regression analysis --- Statistics --- Statistical analysis --- Statistical data --- Statistical methods --- Statistical science --- Mathematics --- Econometrics --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling
Choose an application
Estimation theory --- Regression analysis --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling --- Estimating techniques --- Least squares --- Mathematical statistics --- Stochastic processes --- Estimation theory. --- Regression analysis.
Choose an application
"Spatial Regression Analysis Using Eigenvector Spatial Filtering provides both theoretical foundations and guidance on practical implementation for the eigenvector spatial filtering (ESF) technique. ESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in georeferenced data analyses. With its flexible structure, ESF can be easily applied to generalized linear regression models. The book discusses ESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, and spatial interaction models. In addition, it provides a tutorial for ESF model specification and interfaces, including author developed, user-friendly software"--
Spatial analysis (Statistics) --- Regression analysis. --- Eigenvectors. --- Matrices --- Vector spaces --- Eigenfactor --- Analysis, Regression --- Linear regression --- Regression modeling --- Multivariate analysis --- Structural equation modeling --- Analysis, Spatial (Statistics) --- Correlation (Statistics) --- Spatial systems
Choose an application
Das Buch vereinigt die zahlreichen Ansätze zur Erklärung einer Menge von Variablen mittels einer anderen Variablenmenge. Die Ansätze werden in ihren Grundstrukturen dargestellt. Die Beschränkung darauf ist notwendig, gibt es doch zu jeder der vorgestellten Methoden eigene Monographien. Auf diese Spezialliteratur wird für weitergehende Aspekte verwiesen. Die zahlreichen Beispiele werden mit der freien statistischen Programmierumgebung R durchgerechnet; dazu wird der R-Code angegeben. Die überwältigende Anzahl von Funktionen in R erlaubt es, die Vielfalt der hier besprochenen Methoden mit R allein und ohne Programmierung umzusetzen. So sind nicht zu komplexe Auswertungen auf der Basis dieses Textes leicht möglich.
Listing 1 - 10 of 291 | << page >> |
Sort by
|