Narrow your search

Library

KU Leuven (13)

ULB (10)

ULiège (9)

UNamur (4)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UAntwerpen (3)

UCLL (3)

More...

Resource type

book (13)


Language

English (11)

French (2)


Year
From To Submit

2019 (1)

2017 (1)

2010 (3)

2006 (2)

2001 (1)

More...
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
The moment maps in diffeology
Author:
ISBN: 9780821847091 Year: 2010 Publisher: Providence, R.I. American Mathematical Society

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Applications of Polyfold Theory I : The Polyfolds of Gromov-Witten Theory
Authors: --- ---
ISBN: 9781470422035 1470422034 Year: 2017 Publisher: Providence American Mathematical Society

An introduction to symplectic geometry
Author:
ISSN: 10657339 ISBN: 0821820567 9780821820568 Year: 2001 Volume: 26 Publisher: Providence, R.I. American Mathematical Society

Loading...
Export citation

Choose an application

Bookmark

Abstract

Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Ordinary differential equations and smooth dynamical systems
Authors: ---
ISBN: 3540170006 0387170022 3540170022 0387170006 3540170014 0387170014 3540170030 0387170030 3540181733 0387181733 366202537X 3662025353 3662067951 3662067935 9783540170020 9783540170006 9783540170037 3540505830 3540626352 Year: 1988 Volume: 4 Publisher: Berlin Springer


Book
Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems
Authors: --- ---
ISBN: 9781470434922 147043492X Year: 2019 Publisher: Providence, RI : American Mathematical Society,


Book
Locally Toric manifolds and singular Bohr-Sommerfeld leaces.
Author:
ISBN: 9780821847145 Year: 2010 Publisher: Providence American Mathematical Society


Book
Type des points fixes des difféomorphismes symplectiques de Tn x Rn
Author:
ISBN: 2856290167 Year: 1992 Publisher: Paris Société mathématique de France


Book
Théorie de Morse et homologie de Floer
Authors: ---
ISBN: 2759809218 1283054698 9786613054692 2759807304 9782759807307 9781283054690 9782759805181 9782271070876 9782789505181 9782759809219 6613054690 Year: 2010 Publisher: Les Ulis : Paris : EDP Sciences ; CNRS éditions,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d’Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l’« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l’étude sont alors plus compliqués et nécessitent l’introduction de méthodes d’analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l’ouvrage contient en appendice la présentation d’un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés – géométrie différentielle, topologie algébrique et analyse – auxquels le lecteur pourra se référer si besoin. L’ouvrage est issu d’un cours de M2 donné à l’université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.

Listing 1 - 10 of 13 << page
of 2
>>
Sort by