Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Geometry --- Symplectic geometry. --- Géométrie symplectique --- 51 <082.1> --- Mathematics--Series --- Géométrie symplectique --- Symplectic geometry --- Geometry, Differential --- Géometrie symplectique
Choose an application
Symplectic geometry. --- Gromov-Witten invariants. --- Géométrie symplectique --- Invariants de Gromov-Witten --- GW invariants --- Invariants, Gromov-Witten --- Symplectic geometry --- Geometry, Differential --- Géométrie symplectique. --- Invariants de Gromov-Witten. --- Géométrie symplectique --- Gromov-Witten invariants
Choose an application
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Geometry --- Symplectic geometry --- Géométrie symplectique --- 514.1 --- Geometry, Differential --- General geometry --- 514.1 General geometry --- Géométrie symplectique
Choose an application
Mechanics, Analytic --- Mechanics, Celestial --- 517.925 --- Systems and analytic theory of ordinary differential equations --- 517.925 Systems and analytic theory of ordinary differential equations --- Celestial mechanics --- Differentiable dynamical systems --- Mécanique analytique --- Mécanique céleste --- Systèmes dynamiques --- Dynamics. --- Symplectic geometry --- Géométrie symplectique --- Mécanique analytique. --- Mécanique céleste. --- Systèmes dynamiques. --- Géométrie symplectique. --- Systèmes dynamiques. --- Géométrie symplectique. --- Mécanique analytique. --- Mécanique céleste.
Choose an application
Symplectic geometry. --- Symplectic groups. --- Domains of holomorphy. --- Géométrie symplectique. --- Groupes symplectiques. --- Domaines d'holomorphie. --- Géométrie symplectique --- Groupes symplectiques --- Domaines d'holomorphie --- Symplectic geometry --- Symplectic groups --- Domains of holomorphy --- Holomorphy domains --- Analytic continuation --- Functions of several complex variables --- Groups, Symplectic --- Linear algebraic groups --- Geometry, Differential
Choose an application
Quantum mechanics. Quantumfield theory --- Mathematical physics --- Geometric quantization. --- Quantification géométrique --- 51 <082.1> --- Mathematics--Series --- Quantification géométrique --- Geometric quantization --- Geometry, Quantum --- Quantization, Geometric --- Quantum geometry --- Geometry, Differential --- Quantum theory --- Géometrie symplectique
Choose an application
Differential geometry. Global analysis --- Symplectic manifolds --- Diffeomorphisms --- Fixed point theory --- Fixed point theorems (Topology) --- Nonlinear operators --- Coincidence theory (Mathematics) --- Differential topology --- Manifolds, Symplectic --- Geometry, Differential --- Manifolds (Mathematics) --- Géometrie symplectique
Choose an application
Differential geometry. Global analysis --- Symplectic geometry --- Mechanics, Analytic --- Géométrie symplectique --- Mécanique analytique --- 514.75 --- Differential geometry in spaces with fundamental groups --- Mechanics, Analytic. --- Symplectic geometry. --- 514.75 Differential geometry in spaces with fundamental groups --- Géométrie symplectique --- Mécanique analytique --- Symplectic manifolds --- Variétés symplectiques --- Poisson, Variétés de --- Poisson manifolds --- Manifolds (Mathematics) --- Variétés (mathématiques) --- Variétés de contact --- Contact manifolds --- Géometrie différentielle
Choose an application
Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d’Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l’« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l’étude sont alors plus compliqués et nécessitent l’introduction de méthodes d’analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l’ouvrage contient en appendice la présentation d’un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés – géométrie différentielle, topologie algébrique et analyse – auxquels le lecteur pourra se référer si besoin. L’ouvrage est issu d’un cours de M2 donné à l’université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.
Morse theory. --- Floer homology. --- Floer cohomology --- Symplectic geometry --- Calculus of variations --- Critical point theory (Mathematical analysis) --- Global analysis (Mathematics) --- Morse theory --- Analyse globale (mathématiques) --- Morse, Théorie de. --- Géometrie symplectique --- Analyse globale (mathématiques) --- Géometrie symplectique --- Topologie differentielle --- Théorie de Morse --- Homologie de Floer --- Morse, Théorie de.
Choose an application
Quantum mechanics. Quantumfield theory --- Mathematical physics --- Geometry, Differential --- 514.84 --- 530.1 --- Physical mathematics --- Physics --- Differential geometry --- Geometric methods in quantum mechanics and in the theory of elementary particles --- Basic principles of physics --- Mathematics --- Geometry, Differential. --- Mathematical physics. --- 530.1 Basic principles of physics --- 514.84 Geometric methods in quantum mechanics and in the theory of elementary particles --- Géometrie différentielle --- Géometrie symplectique --- Géometrie différentielle --- Géometrie symplectique --- Equations differentielles sur une variete
Listing 1 - 10 of 13 | << page >> |
Sort by
|