Listing 1 - 10 of 238 | << page >> |
Sort by
|
Choose an application
Osmotically Driven Membrane Processes provides an overview of membrane systems and separation processes, recent trends in membranes and membrane processes, and advancements in osmotically driven membrane systems. It focuses on recent advances in monitoring and controlling wastewater using membrane technologies. It explains and clarifies important research studies as well as discusses advancements in the field of organic-inorganic pollution.
Choose an application
Membrane Distillation (MD) is based on the evaporation of a hot feed through a microporous and hydrophobic membrane. Thermal energy is needed to heat the feed up to the desired temperature during the process. Therefore, improvements of the thermal performance of MD are important to apply this technology at large scale. The Special Issue "Thermal Performance of Membrane Distillation" focuses on the recent research efforts made in this direction, covering both the development of new membranes and the optimization of the process.
Choose an application
Population growth and climate change are leading to global water scarcity. Water shortages are thus hindering rural, urban and industrial development. These days, approximately half of the world's population is affected temporarily by water scarcity. To enable a secure water supply, alternative water sources must be generated to tackle the challenge of water scarcity. An important alternative resource is the reuse of treated wastewater. Water reuse processes are rarely considered and implemented. In contrast to the storage and use of rainwater, treated wastewater is a valuable resource, as it is available daily. Certain wastewater treatment processes are required to produce the new resource "reused water". The treatment processes depend on the quality of the wastewater since industrial and municipal wastewater flows are characterized by different concentrations. Moreover, water reuse methods must be developed in order to use the treated wastewater as efficiently as possible. Ideally, the reused water can be provided according to the "fit for purpose" principle and applied directly in areas such as irrigation, street cleaning, toilet flushing or make-up water for cooling systems. The Special Issue brings together new wastewater treatment technologies and water reuse concepts to tackle the challenges of climate change with the aim of bringing the resource "reused water" according to the "fit for purpose" principle to the user. This issue aims to draw on global experiences, approaches and solutions.
Water --- Membrane separation. --- Purification --- Membrane filtration. --- Filtration, Membrane --- Membrane filtration --- Separation, Membrane --- Separation (Technology) --- Membrane separation --- Filtration
Choose an application
The fluorine nucleus, when introduced as a reporter group in membrane-associated proteins or peptides, offers a highly sensitive alternative to conventional isotope labels in solid-state NMR spectroscopy. The study presented here is concerned with the development of 19F-NMR methods, as well as data analysis schemes to extract the wealth of structural and motional information from the spectra.
Choose an application
Extracorporeal membrane oxygenation is an effective tool for managing patients with severe acute cardiogenic shock and/or respiratory failure. With emphasis on teamwork and adherence to guidelines, protocols, and objective tools to assist in patient selection, management, and weaning, outcomes have improved. Nevertheless, every aspect of supporting patients who require extracorporeal support remains a challenge - with many unanswered questions. The goal of this text, as a supplement to the previous editions on this rapidly evolving topic, is to provide the reader with a more in-depth review of some of the ongoing issues in this field. Topics ranging from administrative aspects to developing a program, nursing issues, ethical concerns, and a variety of clinical topics are discussed at length.
Choose an application
Electrospinning can be used to prepare nanofibrous membranes from diverse polymers. The large surface-to-volume ratio makes them suitable for diverse fields of applications, from filters to catalysts to tissue engineering.Here, we search for the latest developments dealing with nanofiber mats for biomedicine. From wound healing to slow release, and from tissue engineering to stem cell differentiation, nanofibrous membranes can be found in a broad range of biomedical applications. For these utilizations, their chemical as well as physical properties are important, such as hydrophobicity, fiber morphology, membrane porosity, mechanical strength, etc. This Special Issue focuses on nanofibrous membranes for biomedical applications, measuring and optimizing the correlated membrane properties. It covers the full range from basic research on new materials and producing novel electrospun structure to drug release to cell growth on nanofiber mats.
Choose an application
Membrane distillation (MD) is a relatively new thermal membrane process which is attracting significant interest as a potential low cost and energy saving alternative to conventional separation processes such as distillation and reverse osmosis (RO). Its main advantages are the possibility to exploit waste grade heat and low grade heat for operation, and the production of high-purity distillate which is almost independent of feed concentration. Other benefits include the theoretically complete rejection of non-volatile solutes, the relative operating pressure and membrane-fouling problem. On the contrary, wetting and temperature polarization are its main drawbacks. The Special Issue covers developments at various forefronts of MD, including membrane preparation, fouling and scaling issues, process improvements and applications.
Membrane distillation. --- Membrane evaporation --- Thermopervaporation --- Transmembrane evaporation --- Distillation
Choose an application
P-type ATPases are a large group of evolutionary related ion and lipid pumps that have in common that they catalyze a transient phosphorylated intermediate at a key conserved aspartate residue within the pump in order to function. While all the P-type ATPases perform active transport across cellular membranes, they have different transport specificities and serve diverse physiological functions. The ion pumps of the P-type ATPase family create electrochemical gradients that are essential for transepithelial transport, nutrient uptake and membrane potential. They mediate cellular signaling and provide the ligands for metalloenzymes. Phospholipid flippases, also members of the P-type ATPase superfamily, regulate the asymmetric lipid distribution across the lipid bilayer and are critical for the biogenesis of cell membranes. Since all of these ATPases serve fundamental cellular functions, malfunctioning is associated with various pathophysiological processes and dysfunctions of P-type ATPases are known to contribute to cardiovascular, neurological, renal and metabolic diseases. However, with the ever growing knowledge about the diseases associated with the malfunction of P-type ATPases, they are also promising targets for future drug development. In eukaryotes the most prominent examples of P-type ATPases are the Na+,K+-ATPase (sodium pump), the H+-ATPase (proton pump), the H+,K+-ATPase (proton-potassium pump) and the Ca2+-ATPases (calcium pumps). Mutations in the alpha2 and alpha3 subunit of Na,K-ATPase have been associated with neurological diseases, including rapid-onset dystonia-parkinsonism, familial hemiplegic migraine and alternating hemiplegia of childhood. Dysregulation and loss of expression of Na,K-ATPase and plasma membrane Ca-ATPases may be involved in cancer progression. Malfunctioning of the Ca-ATPases is also thought to contribute to hypertension and neurodegenerative diseases and mutations can cause cardiac dysfunction, deafness, hypertension and cerebellar ataxia. Mutations in the SERCA calcium pumps can cause heart failure, Brody myopathy and Darier disease and mutations in the Cu-ATPase genes cause Menkes and Wilson disease. Deficiencies in phospholipid flippases have been linked to progressive familial intrahepatic cholestasis, obesity, diabetes, hearing loss and neurological diseases.
P-type ATPases --- Disease --- Health --- Membrane Physiology --- Membrane biophysics
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
vesicles --- membrane traffic --- lipids --- membrane dynamics --- disease models
Choose an application
Membrane proteins are essential for the diverse biological functions of the cells and intercellular communication in living organisms. With the recent developments in the methodologies, the research on membrane proteins has been undergoing a major transformation. In this informative book, the biological and dynamic behaviour of membrane proteins are introduced, discussed, and reviewed by some of the leading researchers in the field. The main objective of this compendium is to present the recent research in the fundamental and advanced concepts and methodologies used for studying membrane proteins. Membrane protein purification and reconstitution, protein-lipid interaction, ion/substrate transport, conformational and functional dynamics, the interaction of infectious agents, cell death, and organelle morphology are among the topics that are covered. This reprint is intended for a broad range of novice and experienced scientists with different levels of experience, from biophysicists and biochemists to microbiologists, cell biologists, and physiologists.
Listing 1 - 10 of 238 | << page >> |
Sort by
|