Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The auditory perception of sounds (environmental, vocal or music) is one of the 5 principal senses consciously monitored by our brains, and is crucial for many human endeavors as well as quality of life. Loss of optimal performance in this principal sensory system leads to loss of effective communication and intimacy, as well as increased risk of isolation, depression, cognitive decline, and greater vulnerability to predators. The vestibular system ensures that individuals remain upright and effectively monitor their posture within their spatial surroundings, move effectively, and remain focused on visual targets during motion. The loss of vestibular sensitivity results in postural instability, falls, inability to observe the environment during motion, and a debilitating incapacity to function effectively. The sensory cells for both auditory and vestibular systems are located within the inner ear of the temporal bulla. There are many causes of auditory and vestibular deficits, including congenital (or genetic) events, trauma, aging and loud sound exposures. Ototoxicity refers to damage of the auditory or vestibular structures or functions, as the result of exposure to certain pharmaceuticals, chemicals, and/or ionizing radiation exposure that damage the inner ear. Ototoxicity is a major contributor to acquired hearing loss and vestibular deficits, and is entirely preventable. In 2009, the United States Department of Defense initiated the Hearing Center of Excellence (HCE), headquartered in San Antonio, Texas, in response to the prevalence of acquired auditory and vestibular deficits in military and veteran populations. The knowledge shared in this eBook supports the HCE’s mandate to improve aural protection of military and civilian populations worldwide. The last few years have seen significant advances in understanding the cellular mechanisms underlying ototoxic drug-induced hearing loss and vestibular deficits. In this eBook, we present some of these advances and highlight gaps where further research is needed. Selected articles discuss candidate otoprotective agents that can ameliorate the effects of ototoxicity in the context of how they illustrate cellular mechanisms of ototoxicity. Our goal in illustrating these advances in mechanisms of ototoxicity is to accelerate the development of clinical therapies that prevent or reverse this debilitating disorder.
blood-labyrinth barrier --- neurotoxicity --- otoprotection --- aminoglycosides --- ototoxic synergy --- sensory disorders --- cisplatin
Choose an application
Efforts to miniaturize sensing and diagnostic devices and to integrate multiple functions into one device have caused massive growth in the field of microfluidics and this integration is now recognized as an important feature of most new diagnostic approaches. These approaches have and continue to change the field of biosensing and diagnostics. In this Special Issue, we present a small collection of works describing microfluidics with applications in biosensing and diagnostics.
therapeutic drug monitoring (TDM) --- aminoglycosides --- size and mobility traps (SMT) --- microfluidics --- numerical techniques --- Microsoft Excel --- finite difference method --- Navier–Stokes --- time dependent flow --- dynamic flow --- initiation of flow --- Poiseuille flow --- point-of-care --- biosensor --- hybrid integration --- acoustofluidics --- cavitation --- micromixing --- optical absorbance --- colorimetry --- salivary potassium --- biomolecules --- microfluidic --- dielectrophoretic immobilization --- CMOS biosensor --- lab-on-chip --- microfluidic probe --- droplet --- sampling --- Taylor dispersion --- diagnostic --- GMR sensor --- whole cell --- microdroplets --- photo-isomerisation --- photokinetics --- opto-mechanics --- conformational states
Choose an application
This Special Issue provides an update on the state of the art and current trends in polymeric drug-delivery systems specifically designed for improving drug bioavailability. The multiple contributions received further strengthen the role of polymers in modern drug delivery and targeting, illustrating the different approaches possible and unveiling what the future may bring.
Medicine --- Pharmaceutical industries --- cystic fibrosis --- Pseudomonas aeruginosa --- liposomes --- efflux pump inhibitor --- PABN --- aminoglycosides --- macrolides --- poloxamer --- thiourea --- thiolation --- mucoadhesion --- drug release --- in vivo analysis --- in vitro dissolution studies --- S-propargyl-cysteine --- poly(lactic acid) --- endogenous hydrogen sulfide --- water-in-oil-in-water --- rheumatoid arthritis --- chitosan --- drug delivery --- drug absorption --- intestinal assimilation --- oral bioavailability --- nanoemulsions --- micelles --- SEDDS --- zeta potential --- sustained release --- albumin nanoparticle --- MPT0B291 --- high-pressure homogenizer --- histone deacetylase --- calix[8]arenes --- silibinin --- inclusion complexes --- PEGylation --- cytotoxicity --- oromucosal films --- sodium alginate --- nanoparticle drug carriers --- digoxin --- zein --- heart failure --- polymer–liposome complexes --- Pluronic®-poly(acrylic acid) --- Pluronic®-poly(N,N-dimethylaminoethyl methacrylate) --- stimuli-responsive --- intelligent drug delivery systems --- liposome --- polymer --- long circulation --- polymer–lipid conjugates --- targeting --- stimulus-responsive --- antibody --- affinity --- cyclodextrin --- protein therapeutics --- sustained drug delivery --- Nitric oxide --- hydrogel --- wound dressing --- chronic wounds --- glycyrrhetinic acid --- Soluplus® --- solid dispersions --- anti-inflammatory --- biosafety --- bioavailability --- n/a --- polymer-liposome complexes --- polymer-lipid conjugates
Listing 1 - 3 of 3 |
Sort by
|