Narrow your search

Library

KU Leuven (5)

ULiège (5)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

LUCA School of Arts (3)

FARO (2)

Vlaams Parlement (2)

More...

Resource type

book (7)


Language

English (6)

French (1)


Year
From To Submit

2022 (3)

2019 (1)

2011 (1)

2009 (1)

1922 (1)

Listing 1 - 7 of 7
Sort by

Book
"Carnot batteries" for electricity storage
Authors: ---
Year: 2019 Publisher: [Washington, D.C.] : National Renewable Energy Laboratory,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
L'évolution physico-chimique : la relativité d'Einstein dans la classification des sciences ; l'évolution physico-chimique et les probabilités ; le principe de Carnot envisagé dans les organismes vivants
Authors: ---
Year: 1922 Publisher: Paris : Etienne Chiron,


Book
Modern thermodynamics : based on the extended Carnot theorem
Author:
ISBN: 3642113486 9786613369666 1283369664 3642113494 Year: 2011 Publisher: New York : Beijing : Springer ; Science Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Modern Thermodynamics- Based on the Extended Carnot Theorem" provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many "abnormal phenomena", such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China.


Book
Carnot Cycle and Heat Engine Fundamentals and Applications II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This second Special Issue connects both the fundamental and application aspects of thermomechanical machines and processes. Among them, engines have the largest place (Diesel, Lenoir, Brayton, Stirling), even if their environmental aspects are questionable for the future. Mechanical and chemical processes as well as quantum processes that could be important in the near future are considered from a thermodynamical point of view as well as for applications and their relevance to quantum thermodynamics. New insights are reported regarding more classical approaches: Finite Time Thermodynamics F.T.T.; Finite Speed thermodynamics F.S.T.; Finite Dimensions Optimal Thermodynamics F.D.O.T. The evolution of the research resulting from this second Special Issue ranges from basic cycles to complex systems and the development of various new branches of thermodynamics.


Book
Carnot Cycle and Heat Engine Fundamentals and Applications II
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This second Special Issue connects both the fundamental and application aspects of thermomechanical machines and processes. Among them, engines have the largest place (Diesel, Lenoir, Brayton, Stirling), even if their environmental aspects are questionable for the future. Mechanical and chemical processes as well as quantum processes that could be important in the near future are considered from a thermodynamical point of view as well as for applications and their relevance to quantum thermodynamics. New insights are reported regarding more classical approaches: Finite Time Thermodynamics F.T.T.; Finite Speed thermodynamics F.S.T.; Finite Dimensions Optimal Thermodynamics F.D.O.T. The evolution of the research resulting from this second Special Issue ranges from basic cycles to complex systems and the development of various new branches of thermodynamics.

Keywords

Research & information: general --- combined cycle --- inverse Brayton cycle --- regenerative Brayton cycle --- power output --- thermal efficiency --- finite time thermodynamics --- closed simple Brayton cycle --- power density --- ecological function --- multi-objective optimization --- quantum thermodynamics --- quantum circuit --- open quantum system --- isothermal process --- IBM quantum computer --- Stirling refrigerator --- thermodynamic analysis --- numerical model --- imperfect regeneration --- irreversible Lenoir cycle --- cycle power --- heat conductance distribution --- performance optimization --- irreversible Carnot engine --- optimization --- thermodynamics with finite speed --- internal and external irreversibilities --- entropy generation calculation --- thermodynamics in finite time --- irreversible Diesel cycle --- Carnot cycle --- Carnot efficiency --- thermal entropy --- chemical entropy --- mechanical entropy --- thermal exergy --- chemical exergy --- mechanical exergy --- metabolic reactions --- Carnot engine --- Chambadal model --- entropy production action --- efficiency at maximum power --- combined cycle --- inverse Brayton cycle --- regenerative Brayton cycle --- power output --- thermal efficiency --- finite time thermodynamics --- closed simple Brayton cycle --- power density --- ecological function --- multi-objective optimization --- quantum thermodynamics --- quantum circuit --- open quantum system --- isothermal process --- IBM quantum computer --- Stirling refrigerator --- thermodynamic analysis --- numerical model --- imperfect regeneration --- irreversible Lenoir cycle --- cycle power --- heat conductance distribution --- performance optimization --- irreversible Carnot engine --- optimization --- thermodynamics with finite speed --- internal and external irreversibilities --- entropy generation calculation --- thermodynamics in finite time --- irreversible Diesel cycle --- Carnot cycle --- Carnot efficiency --- thermal entropy --- chemical entropy --- mechanical entropy --- thermal exergy --- chemical exergy --- mechanical exergy --- metabolic reactions --- Carnot engine --- Chambadal model --- entropy production action --- efficiency at maximum power

Thermodynamics
Authors: --- ---
ISBN: 1680159046 1282158309 9786612158308 1400826977 9781400826971 9781680159042 0691123276 9780691123271 Year: 2009 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.

Keywords

Thermodynamics --- Differentiable dynamical systems. --- Differential dynamical systems --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Mathematics. --- Addition. --- Adiabatic process. --- Applied mathematics. --- Arthur Eddington. --- Asymmetry. --- Available energy (particle collision). --- Axiom. --- Balance equation. --- Banach space. --- Boltzmann's entropy formula. --- Brillouin scattering. --- Carnot cycle. --- Classical mechanics. --- Clausius (crater). --- Compact space. --- Conservation law. --- Conservation of energy. --- Constant of integration. --- Continuous function (set theory). --- Continuous function. --- Control theory. --- Deformation (mechanics). --- Derivative. --- Diathermal wall. --- Diffeomorphism. --- Differentiable function. --- Diffusion process. --- Dimension (vector space). --- Dimension. --- Dissipation. --- Dot product. --- Dynamical system. --- Emergence. --- Energy density. --- Energy level. --- Energy storage. --- Energy. --- Entropy. --- Equation. --- Equations of motion. --- Equilibrium point. --- Equilibrium thermodynamics. --- Equipartition theorem. --- Existential quantification. --- First law of thermodynamics. --- Hamiltonian mechanics. --- Heat capacity. --- Heat death of the universe. --- Heat flux. --- Heat transfer. --- Homeomorphism. --- Hydrogen atom. --- Ideal gas. --- Inequality (mathematics). --- Infimum and supremum. --- Infinitesimal. --- Initial condition. --- Instant. --- Internal energy. --- Irreversible process. --- Isolated system. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Linear dynamical system. --- Lipschitz continuity. --- Local boundedness. --- Lyapunov function. --- Lyapunov stability. --- Mathematical optimization. --- Molecule. --- Non-equilibrium thermodynamics. --- Operator norm. --- Probability. --- Quantity. --- Reversible process (thermodynamics). --- Second law of thermodynamics. --- Semi-infinite. --- Smoothness. --- State variable. --- State-space representation. --- Statistical mechanics. --- Steady state. --- Summation. --- Supply (economics). --- Systems theory. --- Temperature. --- Theorem. --- Theoretical physics. --- Theory. --- Thermal conduction. --- Thermal equilibrium. --- Thermodynamic equilibrium. --- Thermodynamic process. --- Thermodynamic state. --- Thermodynamic system. --- Thermodynamic temperature. --- Thermodynamics. --- Time evolution. --- Zeroth law of thermodynamics.


Book
Finite-Time Thermodynamics
Authors: --- ---
ISBN: 3036549501 3036549498 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.

Keywords

Economics, finance, business & management --- macroentropy --- microentropy --- endoreversible engine --- reversible computing --- Landauer’s principle --- piston motion optimization --- endoreversible thermodynamics --- stirling engine --- irreversibility --- power --- efficiency --- optimization --- generalized radiative heat transfer law --- optimal motion path --- maximum work output --- elimination method --- finite time thermodynamics --- thermodynamics --- economics --- optimal processes --- n/a --- averaged --- heat transfer --- cyclic mode --- simulation --- modeling --- reconstruction --- nonequilibrium thermodynamics --- entropy production --- contact temperature --- quantum thermodynamics --- maximum power --- shortcut to adiabaticity --- quantum friction --- Otto cycle --- quantum engine --- quantum refrigerator --- finite-time thermodynamics --- sulfuric acid decomposition --- tubular plug-flow reactor --- entropy generation rate --- SO2 yield --- multi-objective optimization --- optimal control --- thermodynamic cycles --- thermodynamic length --- hydrogen atom --- nano-size engines --- a-thermal cycle --- heat engines --- cooling --- very long timescales --- slow time --- ideal gas law --- new and modified variables --- Silicon–Germanium alloys --- minimum of thermal conductivity --- efficiency of thermoelectric systems --- minimal energy dissipation --- radiative energy transfer --- radiative entropy transfer --- two-stream grey atmosphere --- energy flux density --- entropy flux density --- generalized winds --- conservatively perturbed equilibrium --- extreme value --- momentary equilibrium --- information geometry of thermodynamics --- thermodynamic curvature --- critical phenomena --- binary fluids --- van der Waals equation --- quantum heat engine --- carnot cycle --- otto cycle --- multiobjective optimization --- Pareto front --- stability --- maximum power regime --- entropy behavior --- biophysics --- biochemistry --- dynamical systems --- diversity --- complexity --- path information --- calorimetry --- entropy flow --- biological communities --- reacting systems --- Landauer's principle --- Silicon-Germanium alloys

Listing 1 - 7 of 7
Sort by